Lung sounds contain vital information about pulmonary pathology. In this paper, we use short-term spectral characteristics of lung sounds to recognize associated diseases. Motivated by the success of auditory perception based techniques in speech signal classification, we represent time-frequency information of lung sounds using mel-scale warped spectral coefficients, called here as mel-frequency spectral coefficients (MF-SCs). Next, we employ local binary pattern analysis (LBP) to capture texture information of the MFSCs, and the feature vectors are subsequently derived using histogram representation. The proposed features are used with three well-known classifiers in this field: k-nearest neighbor (kNN), artificial neural network (ANN), and support vector machine (SVM). Also, the performance was tested with multiple SVM kernels. We conduct extensive performance evaluation experiments using two databases which include normal and adventitious sounds. Results show that the proposed features with SVM and also with kNN classifier outperform commonly used wavelet-based features as well as our previously investigated mel-frequency cepstral coefficients (MFCCs) based statistical features, specifically in abnormal sound detection. Proposed features also yield better results than morphological features and energy features computed from rational dilation wavelet coefficients. The Bhattacharyya kernel performs considerably better than other kernels. Further, we optimize the configuration of the proposed feature extraction algorithm. Finally, we have applied mRMR (minimum-redundancy maximum-relevancy) based feature selection method to remove redundancy in the feature vector which makes the proposed method computationally more efficient without any degradation in the performance. The overall performance gain is up to 24.5% as compared to the standard wavelet feature based system.