Purpose. This study aims to explore the application value of the 18F-FDG PET/CT imaging in diagnosing, staging, and typing Langerhans cell histiocytosis (LCH) via the morphological and metabolic analyses of the 18F-FDG PET/CT images. Methods. We retrospectively analyzed the 18F-FDG PET/CT images and clinical data of nineteen patients with LCH. The shape, size, density, distribution, and 18F-FDG uptake of all lesions were documented. In addition, the SUVmax of the lesions, liver, and blood pool was measured prior to calculating the lesion-to-liver and lesion-to-blood pool ratios. Results. Among the 19 analyzed patients, the positive rate of the PET/CT image was 94.7% (18/19), with 1 false negative (5.3%, 1/19) case occurring in the cutaneous LCH. Among the 76 lesions, 69 were FDG-avid lesions (69/76, 90.8%). Additionally, we observed no FDG uptake in 7 lesions (7/76, 9.2%). In contrast, 59 lesions (59/76, 77.6%) were abnormal on diagnostic CT scan, but 17 lesions (17/76, 22.4%) were undetected. The 18F-FDG PET/CT image revealed additional 6 lesions in the bone, 4 in the lymph node, 3 in the spleen, and 3 occult lesions, which CT scan did not detect. Additionally, there were 6 cases with single-system LCH. The remaining 13 cases were multisystem LCH. Our 18F-FDG PET/CT image analyses altered the typing of 4 LCH patients. In the case of all lesions, the mean SUVmax of the 18F-FDG-avid lesions was 5.4 ± 5.1 (range, 0.8∼26.2), and the mean lesion-to-liver SUVmax ratio was 3.1 ± 2.52 (range, 0.7∼11.9), and the mean lesion-to-blood pool SUVmax ratio was 4.6 ± 3.4 (range 0.7∼17.5). Conclusion. The 18F-FDG PET/CT image plays an essential role in LCH diagnosis, primary staging, and typing. It can accurately evaluate the distribution, range, and metabolic information of LCH, providing a vital imaging basis for the clinical evaluation of disease conditions, selection of treatment schemes, and determining patient prognosis.