Key pointsr The contribution of blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) to pulmonary gas exchange efficiency remains unknown and controversial.r Intravenous infusion of adrenaline (epinephrine) increases blood flow through IPAVAs detected by the transpulmonary passage of saline contrast and breathing 40% O 2 minimizes potential contributions from ventilation-to-perfusion inequality and diffusion limitation. r Pulmonary gas exchange efficiency was impaired to the same degree, and the transpulmonary passage of saline contrast was not different, in humans at rest during the intravenous infusion of adrenaline before and after atropine when breathing room air and 40% O 2 .r Cardiac output increased to the same degree during intravenous infusion of adrenaline before and after atropine, but pulmonary artery systolic pressure only increased significantly before atropine.r These data demonstrate that blood flow through IPAVAs contributes to pulmonary gas exchange efficiency and that blood flow through IPAVAs is predominantly mediated by increases in cardiac output rather than increases in pulmonary artery systolic pressure.Abstract Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) has been demonstrated to increase in healthy humans during a variety of conditions; however, whether or not this blood flow represents a source of venous admixture (Q VA /Q T ) that impairs pulmonary gas exchange efficiency (i.e. increases the alveolar-to-arterial P O 2 difference (A-aDO 2 )) remains controversial and unknown. We hypothesized that blood flow through IPAVAs does provide a source ofQ VA /Q T . To test this, blood flow through IPAVAs was increased in healthy humans at rest breathing room air and 40% O 2 : (1) during intravenous adrenaline (epinephrine) infusion at 320 ng kg −1 min −1 (320 ADR), and (2) with vagal blockade (2 mg atropine), before and during intravenous adrenaline infusion at 80 ng kg −1 min −1 (ATR + 80 ADR). When breathing room air the A-aDO 2 increased by 6 ± 2 mmHg during 320 ADR and by 5 ± 2 mmHg during ATR + 80 ADR, and the change in calculatedQ VA /Q T was +2% in both conditions. When breathing 40% O 2 , which minimizes contributions from diffusion limitation and alveolar ventilation-to-perfusion inequality, the A-aDO 2 increased by 12 ± 7 mmHg during 320 ADR, and by 9 ± 6 mmHg during ATR + 80 ADR, and the change in calculatedQ VA /Q T was +2% in both conditions. During 320 ADR cardiac output (Q T ) and pulmonary artery systolic pressure (PASP) were significantly increased; however, during ATR + 80 ADR onlyQ T was significantly increased, yet blood flow through IPAVAs as detected with saline contrast echocardiography was not different between conditions. Accordingly, we suggest that blood flow through IPAVAs provides a source of intrapulmonary shunt, and is mediated primarily by increases inQ T rather than PASP. Abbreviations A-aDO 2 , alveolar-to-arterial difference in P O2 ; ADR, adrenaline (epinephrine); ATR, atropine; C aO2 , arterial oxygen content; C vO...