Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
No abstract
No abstract
Background: Echocardiography is essential for the evaluation of pulmonary hypertension. We determined the feasible quantitative parameter for screening and monitoring pulmonary hypertension in preterm infants. Methods: This secondary analysis of a prospective cohort single-centre study was conducted between August 2019 and September 2020. Serial echocardiography was performed 7 and 28 days after birth and at 36 weeks postmenstrual age. The data of infants who developed pulmonary hypertension at 36 weeks postmenstrual age were compared with those without pulmonary hypertension. We also modelled the parameters’ trend and performed an interaction test using multi-level Gaussian regression. Results: Out of 30 infants enrolled in the study, 79 echocardiograms were analysed. Left ventricular eccentric index was obtainable in all infants, while tricuspid jet velocity was measurable in 44.1%. Left ventricular eccentric index correlated well with tricuspid regurgitation jet velocity (r = 0.77, P < 0.001). Six infants were diagnosed with newly developed or persistent pulmonary hypertension at 36 weeks postmenstrual age. Serial left ventricular eccentric index showed a significantly different increasing trend in the pulmonary hypertension group (change per day: +0.004; P = 0.090) from the decreasing trend among a non-pulmonary hypertension group (change per day: –0.001; P = 0.041) (P for interaction = 0.007). Right ventricular systolic function and right ventricular isovolumic systolic velocity revealed a reducing trend in the pulmonary hypertension group, which was different from the improving trend in non-pulmonary hypertension infants. Infants with low current weight, low postmenstrual age, and requiring high-flow oxygen therapy at day 28 of life trended to increase the risk of late pulmonary hypertension. Conclusion: Left ventricular eccentric index and right ventricular isovolumic systolic velocity were feasible for assessing pulmonary hypertension and should be incorporated into pulmonary hypertension evaluation. Serial left ventricular eccentric index and right ventricular isovolumic systolic velocity may help predict late pulmonary hypertension and early detection of right ventricular dysfunction.
Background Bronchopulmonary dysplasia (BPD), the chronic lung disease associated with prematurity, is characterized by poor alveolar and vascular growth, interstitial fibrosis, and pulmonary hypertension (PH). Although multifactorial in origin, the pathophysiology of BPD is partly attributed to hyperoxia-induced postnatal injury, resulting in lung fibrosis. Recent work has shown that anti-fibrotic agents, including Nintedanib (NTD), can preserve lung function in adults with idiopathic pulmonary fibrosis. However, NTD is a non-specific tyrosine kinase receptor inhibitor that can potentially have adverse effects on the developing lung, and whether NTD treatment can prevent or worsen risk for BPD and PH is unknown. Hypothesis We hypothesize that NTD treatment will preserve lung growth and function and prevent PH in an experimental model of hyperoxia-induced BPD in rats. Methods Newborn rats were exposed to either hyperoxia (90%) or room air (RA) conditions and received daily treatment of NTD or saline (control) by intraperitoneal (IP) injections (1 mg/kg) for 14 days, beginning on postnatal day 1. At day 14, lung mechanics were measured prior to harvesting lung and cardiac tissue. Lung mechanics, including total respiratory resistance and compliance, were measured using a flexiVent system. Lung tissue was evaluated for radial alveolar counts (RAC), mean linear intercept (MLI), pulmonary vessel density (PVD), and pulmonary vessel wall thickness (PVWT). Right ventricular hypertrophy (RVH) was quantified with cardiac weights using Fulton’s index (ratio of right ventricle to the left ventricle plus septum). Results When compared with RA controls, hyperoxia exposure reduced RAC by 64% (p < 0.01) and PVD by 65% (p < 0.01) and increased MLI by 108% (p < 0.01) and RVH by 118% (p < 0.01). Hyperoxia increased total respiratory resistance by 94% and reduced lung compliance by 75% (p < 0.01 for each). NTD administration restored RAC, MLI, RVH, PVWT and total respiratory resistance to control values and improved PVD and total lung compliance in the hyperoxia-exposed rats. NTD treatment of control animals did not have adverse effects on lung structure or function at 1 mg/kg. When administered at higher doses of 50 mg/kg, NTD significantly reduced alveolar growth in RA controls, suggesting dose-related effects on normal lung structure. Conclusions We found that NTD treatment preserved lung alveolar and vascular growth, improved lung function, and reduced RVH in experimental BPD in infant rats without apparent adverse effects in control animals. We speculate that although potentially harmful at high doses, NTD may provide a novel therapeutic strategy for prevention of BPD and PH. Impact Anti-fibrotic therapies may be a novel therapeutic strategy for the treatment or prevention of BPD. High-dose anti-fibrotics may have adverse effects on developing lungs, while low-dose anti-fibrotics may treat or prevent BPD. There is very little preclinical and clinical data on the use of anti-fibrotics in the developing lung. Dose timing and duration of anti-fibrotic therapies may be critical for the treatment of neonatal lung disease. Currently, strategies for the prevention and treatment of BPD are lacking, especially in the context of lung fibrosis, so this research has major clinical applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.