The drug resistance and influencing factors of patients with pulmonary tuberculosis were investigated, and a dual attention dilated residual network (DADRN) algorithm was proposed. The algorithm was applied to process and analyze lung computed tomography (CT) images of 400 included patients with pulmonary tuberculosis. Besides, sparse code book algorithm and bag of visual word (BOVW) algorithms were introduced and compared, and the influencing factors of pulmonary tuberculosis drug resistance were analyzed. The results demonstrated that the localization precision of lung consolidation, nodules, and cavities by the DADRN algorithm reached 91.2%, 92.5%, and 93.8%, respectively. The recall rate of the three algorithms amounted to 83.55%, 84.5%, and 86.4%, respectively. Both localization precision and recall rate of the DADRN algorithm were higher than those of other two algorithms (
P
<
0.05
). The drug resistance rate of streptomycin, isoniazid, and rifampin of the patients aged between 40 and 59 was all higher than those of the patients in other age groups. The drug resistance rate of streptomycin, isoniazid, and rifampin of retreated patients was all higher than those of patients initially treated. The drug resistance rate of streptomycin, isoniazid, and rifampin of the patients with tuberculosis contact was all higher than those of the patients without tuberculosis contact (
P
<
0.05
). Based on the above results, the accuracy of CT images processed by dual attention-based dilated residual classification network algorithm was higher than that processed by other two algorithms. Age, medical history, and history of exposure to tuberculosis were the influencing factors of the drug resistance of patients with pulmonary tuberculosis.