With the arrival of the era of artificial intelligence (AI) and big data, the explosive growth of data has raised higher demands on computer hardware and systems. Neuromorphic techniques inspired by biological nervous systems are expected to be one of the approaches to break the von Neumann bottleneck. Piezotronic neuromorphic devices modulate electrical transport characteristics by piezopotential and directly associate external mechanical motion with electrical output signals in an active manner, with the capability to sense/store/process information of external stimuli. In this review, we have presented the piezotronic neuromorphic devices (which are classified into strain-gated piezotronic transistors and piezoelectric nanogenerator (PENG)-gated field effect transistors based on device structure) and discussed their operating mechanisms and related manufacture techniques. Secondly, we summarize the research progress of piezotronic neuromorphic devices in recent years and provide a detailed discussion on multifunctional applications including bionic sensing, information storage, logic computing, and electrical/optical artificial synapses. Finally, in the context of future development, challenges, and perspectives, we have discussed how to more effectively modulate novel neuromorphic devices with piezotronic effects. It is believed that the piezotronic neuromorphic devices have great potential for the next generation of interactive sensation/memory/computation to facilitate the development of the Internet of Things, AI, biomedical engineering, etc.