Ambulatory blood pressure (BP) provides valuable information for cardiovascular risk assessment. The present cuff-based devices are intrusive for longterm BP monitoring, whereas cuff-less BP measurement methods based on pulse transit time or multi-parameter are inferior in robustness and reliability by using electrocardiogram (ECG) and photoplethysmogram signals. This study examined a multi-sensor fusion-based platform and algorithm for systolic BP (SBP), mean arterial pressure (MAP), and diastolic BP (DBP) estimation. The proposed multisensor platform was comprised of one ECG sensor and two pulse pressure wave sensors for simultaneous signal collection. After extracting 35 features from the collected signals, a weakly supervised feature selection method was proposed for dimension reduction because the reference oscillometric technique-based BP are intermittent and can be redeemed as coarse-grained labels. BP models were then established using a multi-instance regression algorithm. A total of 85 participants including 17 hypertensive and 12 hypotensive patients were enrolled. Experimental results showed that the proposed approach exhibited good accuracy for diverse population with an estimation error of 1.62 ± 7.76 mmHg for SBP, 1.53 ± 6.03 mmHg for MAP, and 1.49 ± 5.52 for DBP, which complied with the association for the advancement of medical instrumentation standards in BP estimation. Moreover, the estimation accuracy is with random daily fluctuations rather than long-term degradation through a maximum two-month follow-up period indicated good robustness performance. These results suggest that the proposed approach is with high reliability and robustness and thus provides a novel insight for cuff-less BP measurement.