PACS 61.82.Ms, The paper is concerned with fast and ultra-fast processes in insulating materials under the irradiation by a high-current-density electron beam of a nanosecond pulse duration. The inflation process induced by the interaction of a high-intensity electron beam with a dielectric is examined. The "instantaneous" distribution of non-ionizing electrons and holes is one of the most important stages of the process. Ionizationpassive electrons and holes make the main contribution to many fast processes with a characteristic time in the range 10 -14 ÷ 10 -12 s: high-energy conductivity, intraband luminescence, etc. A technique was developed for calculation of the "instantaneous" distribution of non-ionizing electrons and holes in a dielectric prior to electron-phonon relaxation. The following experimental effects are considered: intraband luminescence, coexistence of intraband electron luminescence and band-to-band hole luminescence in CsI, high energy conductivity; generation of mechanical fields and their interaction with cracks and dislocations.