Macroscopic mechanical oscillators can be prepared in quantum states and coherently manipulated using the optomechanical interaction. This has recently been used to prepare squeezed mechanical states. However, the scheme used in these experiments relies on slow, dissipative evolution that destroys the system's memory of its initial state. In this paper we propose a protocol based on a sequence of four pulsed optomechanical interactions. In addition to being coherent, our scheme executes in a time much shorter than a mechanical period. We analyse applications in impulsive force sensing and preservation of Schrödinger cat states, which are useful in continuous-variable quantum information protocols.