Pulsed radiofrequency is a well-documented treatment option for multiple painful conditions where pulses of energy are delivered close to neural elements. Since its earliest adoption, this technique has gained increasing acceptance as a minimally invasive procedure, and new applications are evolving. Studies have shown microscopic and biochemical changes that reflect beneficial effects; however, the exact mechanism of action is not yet completely understood. To redress this paucity, 11,476 articles of scientific relevance published between 1980 and November 2022 were mined through a search of the PubMed database, arriving at 49 studies both in animals and humans. In general, the experimental studies examined have shown that pulsed radiofrequency induces multiple changes with antinociceptive and neuromodulatory effects. These modifications include changes in neural and glial cells, synaptic transmission, and perineural space. Studies also reveal that pulsed radiofrequency regulates inflammatory responses, cellular signaling proteins, and the expression of genes related to pain transmission, acting in biological processes in structures such as myelin, mitochondria, axons, glial cells, connective tissue, regulation of proteins, ion channels, and neurotransmitters.