Background
Clinic treatment of diabetic foot ulcers (DFUs) is considerably challenging. Impaired wound healing may be caused by poor vascularization and dysfunction of the extracellular matrix, which leads to poor re-epithelialization and increased risk of infection. In this study, we evaluated the treatment potential of a functional dressing comprising quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan) and magnesium (Mg) on DFUs.
Methods
Dressings were prepared by vacuum freeze-drying. The cellular proliferation, migration, and angiogenesis potential of the functional dressings were determined in vitro. Methicillin-resistant
Staphylococcus aureus
(MRSA
,
ATCC43300) and methicillin-resistant
Staphylococcus epidermidis
287 (MRSE287) were used to evaluate the antibacterial efficiency of the dressings. Finally, a diabetic rat model with infected wounds was used to further evaluate the effects of functional dressings on the healing of DFUs.
Results
Functional dressings facilitated the migration of human dermal fibroblasts and human umbilical vein endothelial cells (HUVECs), while also stimulating angiogenesis in HUVECs. Additionally, the functional dressing could effectively eradicate MRSA and MRSE, exhibiting excellent antibacterial ability against drug-resistant bacteria. The results of in vivo microbiological and histological tests demonstrated effective anti-infection ability and wound-healing potential of this functional dressing.
Conclusions
The dual-functional dressing exhibited wound-healing ability and anti-infection efficiency, demonstrating potential application prospects in DFU treatment.
Translational potential of this article
As one of the common and serious complications of diabetes, DFUs do not heal easily, causing great suffering to patients. Therefore, improvement in the prognosis of DFUs is a crucial clinical need. The dual-functional dressing prepared in this study was proven to improve the treatment of DFUs, both in vitro and in vivo. Considering its urgent clinical necessity and good biocompatibility of its raw materials, such as alginate, Mg, and chitosan derivatives, this dual-functional dressing presents good prospects for clinical translation.