ObjectivePreterm birth carries a significant risk for atypical development. While studies comparing group means have identified a number of early brain correlates of prematurity, they may ‘average out’ effects significant in a single individual. To understand better the cerebral consequences of prematurity, we created normative ‘growth curves’ characterizing neonatal brain development and explored the effect of preterm birth and related clinical risks in individual infants.MethodsWe used Gaussian process regression to map typical volumetric development in 275 healthy term-born infants, modelling for age at scan and sex. We compared magnetic resonance images of 89 preterm infants (born 28.7–34 weeks gestational age) scanned at term-equivalent age to these normative charts and related deviations from typical volumetric development to both perinatal clinical variables and neurocognitive scores at 18 months. We then tested if this approach can be generalized to an independent dataset of 253 preterm infants (born 28–31.6 weeks gestational age) also scanned at term-equivalent age but using different acquisition parameters and scanner, who were followed-up at 20 months.ResultsIn both preterm cohorts, cerebral atypicalities were widespread and often multiple, but varied highly between individual infants. Deviations from normative brain volumetric development were associated with perinatal factors including respiratory support, nutrition and postnatal growth, as well as with later neurocognitive outcome.ConclusionGroup-level understanding of the preterm brain might disguise a large degree of individual differences. We provide a method and a normative dataset for clinicians and researchers to profile the individual brain. This will allow a more precise characterization of the cerebral consequences of prematurity and improve the predictive power of neuroimaging.