2019
DOI: 10.3390/info11010024
|View full text |Cite
|
Sign up to set email alerts
|

Punctuation and Parallel Corpus Based Word Embedding Model for Low-Resource Languages

Abstract: To overcome the data sparseness in word embedding trained in low-resource languages, we propose a punctuation and parallel corpus based word embedding model. In particular, we generate the global word-pair co-occurrence matrix with the punctuation-based distance attenuation function, and integrate it with the intermediate word vectors generated from the small-scale bilingual parallel corpus to train word embedding. Experimental results show that compared with several widely used baseline models such as GloVe a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?