Abstract:Popular approaches to classifying action segments in long, realistic, untrimmed videos start with high quality action proposals. Current action proposal methods based on deep learning are trained on labeled video segments. Obtaining annotated segments for untrimmed videos is time consuming, expensive and error-prone as annotated temporal action boundaries are imprecise, subjective and inconsistent. By embracing this uncertainty we explore to significantly speed up temporal annotations by using just a single ke… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.