Perovskite films with excellent photoelectric properties play a significant role in fabricating high-performance solar cells. Magnetron sputtering is a commercially available and highly reliable technique that is highly attractive for applications in the production of perovskite films. Here, the ion deposition of the step-by-step sputtering process and the continuous sputtering process was systematically explored to realize the controlled ion deposition and crystallization of sputtered perovskite films. We found that the deposition rate of organic components in the initial sputtering stage is greater than that of inorganic components, leading to the ion ratio of perovskite thin films being accurately regulated by adjusting the sputtering time. Furthermore, the injected content of methylammonium bromide will significantly affect the ion ratios and crystal structures of the sputtered perovskite films. The efficiency and stability of sputtered perovskite solar cells can be enhanced significantly by optimizing the sputtered processes and improving the crystallization, which lay a solid foundation for further study of the preparation of perovskite solar cells by magnetron sputtering.