Photorhabdus luminescens is an enterobacterium that is symbiotic with soil entomopathogenic nematodes and pathogenic to a wide range of insects. P. luminescens promotes its own transmission among susceptible insect populations using its nematode host as vector 1 . Its life cycle comprises a symbiotic stage in the nematode's gut and a virulent stage in the insect larvae, which it kills through toxemia and septicemia. After the nematode attacks a prey insect and P. luminescens is released, the bacterium produces a wide variety of virulence factors ensuring rapid insect killing. Bioconversion of the insect cadaver by exoenzymes produced by the bacteria allows the bacteria to multiply and the nematode to reproduce. During this process P. luminescens produces antibiotics to prevent invasion of the insect cadaver by bacterial or fungal competitors. Finally, elimination of competitors allows P. luminescens and the nematode to reassociate specifically before leaving the insect cadaver 2,3 .To better understand this complex life style, we determined the genome sequence of P. luminescens subspecies laumondii strain TT01 4 , a symbiont of the nematode Heterorhabditis bacteriophora isolated on Trinidad and Tobago.
RESULTS
General featuresStrain TT01 possesses a single circular chromosome of 5,688,987 bp with an average GC content of 42.8%. No plasmid replicon was found.A total of 4,839 protein-coding genes, including 157 pseudogenes, seven complete sets (23S, 5S and 16S) of ribosomal RNA operons and 85 tRNA genes, were predicted ( Fig. 1; Supplementary Table 1 online).
Toxins against insectsMore toxin genes were predicted in the P. luminescens genome than in any other bacterial genome sequenced yet. A large number of these toxins may be involved in the killing of a wide variety of insects. Some may act synergistically or use redundancy for 'overkill' 5 , ensuring a quick death of the host. In addition, some may kill insects by interfering with their development. In the TT01 genome, two paralogs, plu4092 and plu4436, encode proteins similar to juvenile hormone esterases (JHEs) of the insect Leptinotarsa decemlineata 6 . Juvenile hormone maintains the insect in a larval state. Its inactivation by JHE allows metamorphosis to proceed. JHEs may be used to trigger the insect endocrine machinery at an inappropriate time and thus represents a promising approach for insect control 7 . These genes are located downstream of highly related orphan genes (plu4093 and plu4437), suggesting a locus duplication.The toxicity of the proteins encoded by these two loci was verified experimentally. Two Escherichia coli clones, containing the recombinant BAC1A02 and BAC8C11, were shown to be toxic toward insects. BAC1A02, which contains the locus plu4093-plu4092, exhibited substantial oral toxicity toward three mosquito species, Aedes aegypti,