This is the rst structural model of L-haloacid dehalogenase (DehLBHS1) isolated from alkalotolerant Bacillus megaterium BHS1, which has been known to degrading halogenated environmental contaminants. The study suggested ve important key amino acid residues of DehLBHS1, namely Arg40, Phe59, Asn118, Asn176 and Trp178 important for catalysis and molecular recognition of haloalkanoic acid. Alkatolerant DehLBHS1was modeled by I-TASSER with the best C-score 1.23. Model validation was carried out utilising PROCHECK to produce the Ramachandran map with 89.2 percent of its residues were found in the most preferred region, indicating that the model was appropriate. The Molecular docking (MD) simulation found that the DehLBHS1 preferred 2,2DCP more than other substrates and formed one hydrogen bond with Arg40 and minimum energy -2.5 kJ/ mol. Molecular dynamics has veri ed the substrate preference towards 2,2DCP based on RMSD, RMSF, Gyration, Hydrogen bond and Molecular distance. This structural knowledge from DehLBHS1 structural perspective gives insights into substrate speci city and catalytic function to exploit DehLBHS1 of BHS1 strain in degrading 2,2-DCP in the polluted alkaline environments.