Catalytic promiscuity, the ability
of enzymes to catalyze multiple
reactions, provides an opportunity to gain a deeper understanding
of the origins of catalysis and substrate specificity. Alkaline phosphatase
(AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions
with a ∼1010-fold preference for phosphate monoester
hydrolysis, despite the similarity between these reactions. The preponderance
of formal positive charge in the AP active site, particularly from
three divalent metal ions, was proposed to be responsible for this
preference by providing stronger electrostatic interactions with the
more negatively charged phosphoryl group versus the sulfuryl group.
To test whether positively charged metal ions are required to achieve
a high preference for the phosphate monoester hydrolysis reaction,
the catalytic preference of three protein tyrosine phosphatases (PTPs),
which do not contain metal ions, were measured. Their preferences
ranged from 5 × 106 to 7 × 107, lower
than that for AP but still substantial, indicating that metal ions
and a high preponderance of formal positive charge within the active
site are not required to achieve a strong catalytic preference for
phosphate monoester over sulfate monoester hydrolysis. The observed
ionic strength dependences of kcat/KM values for phosphate and sulfate monoester
hydrolysis are steeper for the more highly charged phosphate ester
with both AP and the PTP Stp1, following the dependence expected based
on the charge difference of these two substrates. However, the dependences
for AP were not greater than those of Stp1 and were rather shallow
for both enzymes. These results suggest that overall electrostatics
from formal positive charge within the active site is not the major
driving force in distinguishing between these reactions and that substantial
discrimination can be attained without metal ions. Thus, local properties
of the active site, presumably including multiple positioned dipolar
hydrogen bond donors within the active site, dominate in defining
this reaction specificity.