“…Rather, it suggests that the formyl group is dehydrogenated while still bound to the primary amino group of methanofuran yielding N-carboxymethanofuran as product (reaction b) which should break down non-enzymically to CO, and methanofuran (Ewing et al, 1980) : 0 R Reaction (b) indicates that formylmethanofuran dehydrogenase belongs to the group of molybdenum enzymes that catalyze an insertion of an oxygen atom derived from H,O into a C-H bond (Pilato and Stiefel, 1993). Enzymes belonging to this group are xanthine dehydrogenases and xanthine oxidases (Bray, 1988;Wootton et al, 1991), molybdenum-containing formate dehydrogenases (Adams and Mortenson, 1985;Barber et al, 1986;Friedebold and Bowien, 1993), formate-ester dehydrogenase (van Ophem et al, 1992), aldehyde oxidase (Branzoli and Massey, 1974), aldehyde dehydrogenase (Poels et al, 1987), aldehyde oxidoreductase (White et al, 1993), nicotine dehydrogenase (Freudenberg et al, 1988), nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase (Nagel and Andreesen, 1990), isonicotinate dehydrogenase and 2-hydroxyisonicotinate dehydrogenase (Kretzer and Andreesen, 1991), quinoline oxidoreductase (Hettrich et al, 1991), quinoline-4-carboxylic acid oxidoreductase (Bauer and Lingens, 19921, quinaldine oxidoreductase (de Beyer and Lingens, 1993), quinaldic acid 4-oxidoreductase (Fetzner and Lingens, 1993), picolinate dehydrogenase (Siegmund et al, 1990), 2-furoyl-coenzyme A dehydrogenase , and pyrimidine oxidase and pyridoxal oxidase (Burgmayer and Stiefel, 1985). Interestingly, one of these enzymes, milk xanthine oxidase, can even catalyze the dehydrogenation of formamide to carbamic acid (Morpeth et al, 1984) which is a reaction also catalyzed by formylrnethanofuran dehydrogenase.…”