The specific activity of succinyl-CoA:3-oxo-acid CoA-transferase (3-oxoacid CoA-transferase, EC 2.8.3.5) increases significantly during growth in culture in both mouse neuroblastoma N2a and rat glioma C6 cells. To investigate the mechanism(s) responsible for this, antibody specific for rat brain 3-oxoacid CoA-transferase was raised in rabbits. Immunotitrations of 3-oxoacid CoA-transferase from neuroblastoma and glioma cells on days 3 and 7 of growth after subculture showed that the ratio of 3-oxoacid CoA-transferase activity to immunoprecipitable enzyme protein remained constant, indicating that differences in specific activity of the enzyme at these times in both cell types reflect differences in concentration of enzyme protein. In glioma cells, the relative rate of 3-oxoacid CoA-transferase synthesis was about 0.04-0.05% throughout 9 days in culture. In contrast, the relative rate of synthesis of 3-oxo-acid CoA-transferase in neuroblastoma cells was about 0.07-0.08% on days 3, 5 and 7 after subculture, but fell to 0.052% on day 9. The degradation rates of total cellular protein (t1/2 = 28 h) and 3-oxoacid CoA-transferase (t1/2 = 46-50 h) were similar in both cell lines. The rise in specific activity of the enzyme in both cell lines from days 3 to 7 without a significant increase in the relative rate of synthesis reflects a slow approach to steady-state conditions for the enzyme secondary to its slow degradation. Differences in 3-oxoacid CoA-transferase specific activity between the two cell lines are apparently due to a difference of about 60% in relative rates of enzyme synthesis. The presence of 0.5 mM-acetoacetate in the medium significantly increased the specific activity of 3-oxoacid CoA-transferase in neuroblastoma cells during the early exponential growth phase. This treatment increased the relative rate of synthesis of 3-oxoacid CoA-transferase by 23% (P less than 0.025) in these cells on day 3, suggesting that substrate-mediated induction of enzyme synthesis is a mechanism of regulation of 3-oxoacid CoA-transferase.