The genes of the oligodendrocyte lineage (Golli) encode a family of developmentally regulated isoforms of myelin basic protein. The "classic" MBP isoforms arise from transcription start site 3, whereas Golli-specific isoforms arise from transcription start site 1, and comprise both Golli-specific and classic MBP sequences. The Golli isoform BG21 has been suggested to play roles in myelination and T cell activation pathways. It is an intrinsically disordered protein, thereby presenting a large effective surface area for interaction with other proteins such as Golli-interacting protein. We have used multidimensional heteronuclear NMR spectroscopy to achieve sequence-specific resonance assignments of the recombinant murine BG21 in physiologically relevant buffer, to analyze its secondary structure using chemical shift indexing (CSI), and to investigate its backbone dynamics using 15N spin relaxation measurements. We have assigned 184 out of 199 residues unambiguously. The CSI analysis revealed little ordered secondary structure under these conditions, with only some small fragments having a slight tendency toward alpha-helicity, which may represent putative recognition motifs. The 15N relaxation and NOE measurements confirmed the general behavior of the protein as an extended polypeptide chain, with the N-terminal Golli-specific portion (residues S5-T69) being exceptionally flexible, even in comparison to other intrinsically disordered proteins that have been studied this way. The high degree of flexibility of this N-terminal region may be to provide additional plasticity, or conformational adaptability, in protein-protein interactions. Another highly mobile segment, A126-S127-G128-G129, may function as a hinge.