In this study, we purified an acidic β-galactosidase to homogeneity from Ginkgo biloba seeds (β-Gal'ase Gb-1) with approximately 270-fold purification. A molecular mass of the purified β-Gal'ase Gb-1 was estimated about 35 kDa by gel filtration and 32 kDa by SDS-PAGE under non-reducing condition, respectively. On the other hand, β-Gal'ase Gb-1 produced a single band with a molecular mass of 16 kDa by SDS-PAGE under reducing condition. The N-terminal amino acid sequences of 32 kDa and 16 kDa molecules were the same and identified as H-K-A-N-X-V-T-V-A-F-V-M-T-Q-H-, suggesting that β-Gal'ase Gb-1 may function as a homodimeric structure in vivo. When complex-type N-glycans containing β-galactosyl residues were used as substrates, β-Gal'ase Gb-1 showed substantial activity for β1-4 galactosyl residue and modest activity for β1-3 galactosyl residue with an optimum pH near 5.0. Based on these results, the involvement of β-Gal'ase Gb-1 in the degradation of plant complex-type N-glycans is discussed.