Foods and beverages contain many toxic chemicals that raise health concerns. Ethyl carbamate (EC) or urethane is the ethyl ester of carbamic acid. It occurs at low levels, from ng/L to mg/L, in many fermented foods and beverages. EC is genotoxic and carcinogenic for a number of species such as mice, rats, hamsters and monkeys. It has been classified as a group 2A carcinogen, "probably carcinogenic to humans", by the World Health Organization's International Agency for Research on Cancer (IARC) in 2007. The benchmark dose lower limit of EC is 0.3 mg/kg bw/day and the mean intake of EC from food is approximately 15 ng/kg bw/day. Those levels were calculated for relevant foods including bread, fermented milk products and soy sauce. Alcoholic beverages were not included in this calculation. However, high levels of EC can be found in distilled spirits at concentrations ranging from 0.01 mg/L to 12 mg/L depending on to the origin of spirit. Alcoholic drinks should thus be considered as a source of EC. EC is produced by several chemical mechanisms: first, from urea and various proteins like citrulline produced during the fermentation step, and second from cyanide and hydrocyanic acid, via EC precursors such as cyanate. A large panel of EC formation mechanisms is described from simple ethanolysis of urea in homogeneous liquid phase to photochemical oxidation of cyanide ion or complex heterogeneous gas/solid catalytic reactions. Determination of EC in foods and beverages involves various strategies according to the material, food or beverage, solid or liquid, and according to the concentration, from ng/L to mg/L. Usually adapted extractive techniques and pre-concentration steps are followed by analysis by gas chromatography coupled to mass spectrometry (GC-MS of GC-MS-MS). High-performance liquid chromatography (HPLC) and semi-quantitative spectroscopic methods (infra-red) are also proposed as valuable alternatives to the classical but time-consuming GC-MS. Various preventing methods are developed and used in some cases at industrial scale to lower EC levels in food. Two types of preventing methods are described. practices in all steps of the chain of food (or beverages) production lead, in general, to low EC level. Secondly, the abatement of EC precursors can be done by adapted enzymatic, physical-chemical or chemical methods according to the nature of raw materials and conditions of their production processes.