Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We address how one can empirically infer properties of quantum states generated by dynamics involving measurements. Our focus is on many-body settings where the number of measurements is extensive, making brute-force approaches based on postselection intractable due to their exponential sample complexity. We introduce a general-purpose scheme that can be used to infer any property of the postmeasurement ensemble of states (e.g., the average entanglement entropy, or frame potential) using a scalable number of experimental repetitions. We first identify a general class of “estimable properties” that can be directly extracted from experimental data. Then, based on empirical observations of such quantities, we show how one can indirectly infer information about any particular given nonestimable quantity of interest through classical postprocessing. Our approach is based on an optimization task, where one asks what are the minimum and maximum values that the desired quantity could possibly take, while ensuring consistency with observations. The true value of this quantity must then lie within a feasible range between these extrema, resulting in two-sided bounds. Narrow feasible ranges can be obtained by using a classical simulation of the device to determine which estimable properties one should measure. Even in cases where this simulation is inaccurate, unambiguous information about the true value of a given quantity realized on the quantum device can be learned. As an immediate application, we show that our method can be used to verify the emergence of quantum state designs in experiments. We identify some fundamental obstructions that in some cases prevent sharp knowledge of a given quantity from being inferred, and discuss what can be learned in cases where classical simulation is too computationally demanding to be feasible. In particular, we prove that any observer who cannot perform a classical simulation cannot distinguish the output states from those sampled from a maximally structureless ensemble. Published by the American Physical Society 2024
We address how one can empirically infer properties of quantum states generated by dynamics involving measurements. Our focus is on many-body settings where the number of measurements is extensive, making brute-force approaches based on postselection intractable due to their exponential sample complexity. We introduce a general-purpose scheme that can be used to infer any property of the postmeasurement ensemble of states (e.g., the average entanglement entropy, or frame potential) using a scalable number of experimental repetitions. We first identify a general class of “estimable properties” that can be directly extracted from experimental data. Then, based on empirical observations of such quantities, we show how one can indirectly infer information about any particular given nonestimable quantity of interest through classical postprocessing. Our approach is based on an optimization task, where one asks what are the minimum and maximum values that the desired quantity could possibly take, while ensuring consistency with observations. The true value of this quantity must then lie within a feasible range between these extrema, resulting in two-sided bounds. Narrow feasible ranges can be obtained by using a classical simulation of the device to determine which estimable properties one should measure. Even in cases where this simulation is inaccurate, unambiguous information about the true value of a given quantity realized on the quantum device can be learned. As an immediate application, we show that our method can be used to verify the emergence of quantum state designs in experiments. We identify some fundamental obstructions that in some cases prevent sharp knowledge of a given quantity from being inferred, and discuss what can be learned in cases where classical simulation is too computationally demanding to be feasible. In particular, we prove that any observer who cannot perform a classical simulation cannot distinguish the output states from those sampled from a maximally structureless ensemble. Published by the American Physical Society 2024
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.