Heterodisulfide reductase (Hdr) is a unique disulfide reductase that plays a key role in the energy metabolism of methanogenic archaea. Two types of Hdr have been identified and characterized from distantly related methanogens. Here we show that the sulfate-reducing archaeon Archaeoglobus profundus cultivated on H 2 /sulfate forms enzymes related to both types of Hdr. From the membrane fraction of A. profundus, a two-subunit enzyme (HmeCD) composed of a b-type cytochrome and a hydrophilic iron-sulfur protein was isolated. The amino-terminal sequences of these subunits revealed high sequence identities to subunits HmeC and HmeD of the Hme complex from A. fulgidus. HmeC and HmeD in turn are closely related to subunits HdrE and HdrD of Hdr from Methanosarcina spp. From the soluble fraction of A. profundus a six-subunit enzyme complex (Mvh:Hdl) containing Ni, iron-sulfur clusters and FAD was isolated. Via amino-terminal sequencing, the encoding genes were identified in the genome of the closely related species A. fulgidus in which these genes are clustered. They encode a three-subunit [NiFe] hydrogenase with high sequence identity to the F 420 -nonreducing hydrogenase from Methanothermobacter spp. while the remaining three polypeptides are related to the three-subunit heterodisulfide reductase from Methanothermobacter spp. The oxidized enzyme exhibited an unusual EPR spectrum with g xyz ¼ 2.014, 1.939 and 1.895 similar to that observed for oxidized Hme and Hdr. Upon reduction with H 2 this signal was no longer detectable.Keywords: Archaeoglobus; heterodisulfide reductase; Hmc complex; iron-sulfur proteins; sulfate-reducing bacteria.Heterodisulfide reductase (Hdr) is a unique disulfide reductase, which has a key function in the energy metabolism of methanogenic archaea. The enzyme catalyses the reversible reduction of the mixed disulfide (CoM-S-S-CoB) of the two methanogenic thiol-coenzymes, called coenzyme M (CoM-SH) and coenzyme B (CoB-SH). This disulfide is generated in the final step of methanogenesis [1]. Two types of Hdr have been identified and characterized from distantly related methanogens [2][3][4][5][6].One type of Hdr, which was purified and characterized from Methanothermobacter marburgensis, is a soluble ironsulfur flavoprotein composed of the three subunits HdrA, HdrB and HdrC [2,3]. For clarity this enzyme will be called HdrABC throughout this paper. From sequence data it has been deduced that HdrA contains an FAD-binding motif and four binding motifs for [4Fe)4S] clusters. HdrC was shown to contain two binding motifs for [4Fe)4S] clusters while in subunit HdrB no characteristic binding motif of any known cofactor could be identified. However, this subunit contains 10 highly conserved cysteine residues present in two Cx 31)38 CCx 33)34 Cx 2 C motifs.The second type of Hdr, designated as HdrDE, is found in Methanosarcina species [4,6]. This enzyme is tightly membrane bound. It is composed of two subunits, a membrane anchoring b-type cytochrome (HdrE) and a hydrophilic iron-sulfur protein (HdrD). The ...