Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE.