The concept of using cholinesterase bioscavengers for prophylaxis against organophosphorous nerve agents and pesticides has progressed from the bench to clinical trial. However, the supply of the native human proteins is either limited (e.g., plasma-derived butyrylcholinesterase and erythrocytic acetylcholinesterase) or nonexisting (synaptic acetylcholinesterase). Here we identify a unique form of recombinant human butyrylcholinesterase that mimics the native enzyme assembly into tetramers; this form provides extended effective pharmacokinetics that is significantly enhanced by polyethylene glycol conjugation. We further demonstrate that this enzyme (but not a G117H/E197Q organophosphorus acid anhydride hydrolase catalytic variant) can prevent morbidity and mortality associated with organophosphorous nerve agent and pesticide exposure of animal subjects of two model species.countermeasures | nonconventional warfare agents | organophosphorous pesticides | protein engineering | transgenic plants B utyrylcholinesterase (BChE) is the major cholinesterase (ChE) in the serum of humans (1, 2). Although the closely related enzyme acetylcholinesterase (AChE) is well described as the primary synaptic regulator of cholinergic transmission, a definitive physiological role for BChE has not yet been demonstrated (3). BChE is catalytically promiscuous and hydrolyzes not only acetylcholine (ACh), but also longer-chain choline esters (e.g., butyrylcholine, its preferred substrate, and succinylcholine) and a variety of non-choline esters, such as acetylsalicylic acid (aspirin) and cocaine (4, 5). Moreover, BChE binds most environmentally occurring ChE inhibitors as well as man-made organophosphorous (OP) pesticides and nerve agents (NAs) (6, 7-10).The systemic biodistribution and affinity for ChE inhibitors allow endogenous BChE to provide broad-spectrum protection against various toxicants by their sequestration before they reach cholinergic synapses. However, under realistic high-dose exposure scenarios, BChE serum levels are too low to afford adequate protection, resulting in persistent cholinergic excitation due to irreversible inhibition of AChE and subsequent accumulation of ACh. Sublethal manifestations of this state include unregulated exocrine secretion and gastrointestinal hypermotility. Death usually results from unregulated stimulation at neuromuscular junction leading to hemodynamic instability and tetanic contraction of the respiratory muscles (11,12).Current OP poisoning therapy consists of atropine for muscarinic ACh receptor blockade and diazepam for symptomatic management of convulsions (12). Additionally, oxime therapy with 2-pralidoxime (2-PAM) can effectively reactivate some but not all OP-AChE adducts (13)(14)(15). This standard therapeutic approach can reduce mortality, but insufficiently prevents the incapacitation associated with OP toxicity (12, 16).Prophylaxis by administration of exogenous ChEs has proven successful in reducing OP-associated morbidity and mortality, but requires the availability of rel...