Background:
Rigorous study of ventricular fibrillation (VF) is not feasible in humans. The spatiotemporal characteristics of prolonged VF remain undefined, limiting our understanding of this lethal rhythm.
Methods:
VF was mapped in 4 canines. The endocardial and epicardial left ventricle (LV) and right ventricle (RV) were sequentially mapped at 0 to 15, 15 to 30, 30 to 45, and 45 to 60 minutes post-induction. Ten consecutive beats were used to determine average cycle length and regularity index of ventricular and His-Purkinje system signals in discrete regions during each time interval.
Results:
Average VF time was 58±12 minutes. The shortest ventricular cycle length was present in the RV apical region (70±10 msec) at 0 to 15 minutes and at 15 to 30 minutes (89±31 msec) and LV apical region at 45 to 60 minutes (242±163 msec). The His-Purkinje system cycle length was the shortest at the RV outflow tract (75±3 msec) at 0 to 15 minutes, RV inflow and free wall (89±12 msec) at 15 to 30 minutes, LV apical region (83±14 msec) at 30 to 45 minutes, and inferior and inferolateral LV (145±23 msec) at 45 to 60 minutes. Regularity index was the highest in the RV inflow and free wall (78%) at 0 to 15 minutes, RV apical region (86%) at 15 to 30 minutes, LV septum and epicardial anterior RV (80%) at 30 to 45 minutes, and anterior and anterolateral LV (75%) at 45 to 60 minutes.
Conclusions:
These data suggest significant regional changes in electrical activity throughout VF in canines. A transition of fastest electrical activity from RV to LV apical regions across VF was observed. Further studies are warranted to confirm the above findings.