2000
DOI: 10.1016/s0376-7388(00)00418-x
|View full text |Cite
|
Sign up to set email alerts
|

Pushing the limits on possibilities for large scale gas separation: which strategies?

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

4
450
0
7

Year Published

2008
2008
2016
2016

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 781 publications
(461 citation statements)
references
References 38 publications
4
450
0
7
Order By: Relevance
“…17 Mechanical stability and aging properties are core considerations for industrial applications, integral to both product and process design. 5,12,[18][19][20] Glassy polymer membranes offer exciting separation performance, but are hindered by their mechanical properties and physical aging. 21,22 High additive loading generally causes severe embrittlement, though a few recent studies have reported stable MMM films through targeted polymer-additive interactions.…”
Section: Introductionmentioning
confidence: 99%
“…17 Mechanical stability and aging properties are core considerations for industrial applications, integral to both product and process design. 5,12,[18][19][20] Glassy polymer membranes offer exciting separation performance, but are hindered by their mechanical properties and physical aging. 21,22 High additive loading generally causes severe embrittlement, though a few recent studies have reported stable MMM films through targeted polymer-additive interactions.…”
Section: Introductionmentioning
confidence: 99%
“…5,6 Currently, there is much interest in the design of novel polymers exhibiting microporosity, which are potential membrane materials with gas transport properties at or above the upper bound relationships. 4,7,8 In general, higher membrane gas permeability can be obtained by significantly increasing free volume by the introduction of intrinsic microporosity and enhancing the rigidity of polymer chains. 9−12 The rigid and contorted macromolecular chain architecture of polymers of intrinsic microporosity (PIMs), 9,13−25 (e.g., the notable PIM-1 14 is the archetype of this class of materials) provides a desirable combination of poor chain packing and high chain rigidity, giving excellent gas permeability and moderate selectivity, with some PIMs exceeding the Robeson's upper bound for some commercially important gas pairs.…”
Section: ■ Introductionmentioning
confidence: 99%
“…Pequenas quantidades de micro-ou nanocarga, são suficientes para agregar ao polímero uma melhora expressiva em suas propriedades, reduzindo o custo e o peso dos artigos acabados em comparação aos compósitos convencionais [10] . Membranas poliméricas densas têm sido extensivamente estudadas para o emprego em separação de gases, incluindo: o enriquecimento de nitrogênio e de oxigênio; a recuperação de hidrogênio; a remoção de gases ácidos (CO 2 , H 2 S) do gás natural e de voláteis orgânicos; a desidratação de ar e do gás natural, além de outras aplicações, nas áreas química, têxtil, biomédica, petroquímica, farmacêutica e alimentícia [11][12][13][14][15][16][17][18][19][20] . Os poliuretanos (PU) são materiais que têm sido investigados na utilização em membranas densas permeáveis a gases devido à possibilidade de adequação de suas propriedades de transporte através da variação da microestrutura do polímero [15,[21][22][23][24][25][26] .…”
Section: -Avaliação Das Propriedades De Barreira De Membranas Obtidasunclassified
“…As propriedades de transporte também são influenciadas pela natureza química de polióis e extensores de cadeia. Dentre outros fatores que influenciam a permeabilidade das membranas podem ser citados a morfologia, a densidade, o grau de cristalinidade e a temperatura de transição vítrea (T g ) do segmento flexível [20] . Com o aumento do teor de copolímero EG-b-PG, ou seja, de segmentos à base de poli (glicol etilênico), houve um aumento na permeabilidade das membranas.…”
Section: -Avaliação Das Propriedades De Barreira De Membranas Obtidasunclassified