The common neighbor analysis (CNA) for binary systems is a powerful method used to identify chemical ordering in intermetallics by unique indices. The capability of binary CNA, however, is largely restricted by the availability of indices for various ordered phases. In this study, CNA indices of 11 ordered phases derived from a face-centered cubic structure were introduced on a case-by-case basis. These phases, common in intermetallics containing platinum-group metals, include C11b, MoPt2, C6, B11, AgZr, A2B2[111], A2B2[113], Pt3Tc, A3B[011], A3B[111], and A3B[113]. The chemical order in static chemical perturbation, dynamic phase competition, and experimentally reconstructed nanophase alloys were identified using binary CNA. The results indicated that the proposed version of binary CNA exhibited significantly higher accuracy and robustness compared to the short-range order, polyhedral template matching, and the original binary CNA method. Benchmarked against available methods, the formation, decomposition, and competition of specifically ordered phases in bulks and nanoalloys were well reflected by present CNA, highlighting its potential as a robust and widely adopted tool for deciphering chemical ordering at the atomic level.