Cochlear implantation is the common treatment for severe to profound sensorineural hearing loss if there is no benefit from hearing aids. Measuring the electrode impedance along the electrode array at different time points after surgery is crucial in verifying the electrodes’ status, determining the compliance levels, and helping to identify the electric dynamic range. Increased impedance values without proper reprogramming can affect the patient’s performance. The prediction of acceptable levels of electrode impedance at different time points after the surgery could help clinicians during the fitting sessions through a comparison of the predicted with the measured levels. Accordingly, clinicians can decide if the measured levels are within the predicted normal range or not. In this work, we used a dataset of 80 pediatric patients who had received cochlear implants with the MED-EL FLEX 28 electrode array. We predicted the impedance of the electrode arrays in each channel at different time points: at one month, three months, six months, and one year after the date of surgery. We used different machine learning algorithms such as linear regression, Bayesian linear regression, decision forest regression, boosted decision tree regression, and neural networks. The used features include the patient’s age and the intra-operative electrode impedance at different electrodes. Our results indicated that the best algorithm varies depending on the channel, while the Bayesian linear regression and neural networks provide the best results for 75% of the channels. Furthermore, the accuracy level ranges between 83% and 100% in half of the channels one year after the surgery, when an error range between 0 and 3 KΩ is defined as an acceptable threshold. Moreover, the use of the patient’s age alone can provide the best prediction results for 50% of the channels at six months or one year after surgery. This reflects that the patient’s age could be a predictor of the electrode impedance after the surgery.