Mites are highly prevalent arthropods that infest diverse ecological niches globally. Approximately 55,000 species of mites have been identified but many more are yet to be discovered. Of the ones we do know about, most go unnoticed by humans and animals. However, there are several species from the Acariformes superorder that exert a significant impact on global human health. House dust mites are a major source of inhaled allergens, affecting 10–20% of the world’s population; storage mites also cause a significant allergy in susceptible individuals; chiggers are the sole vectors for the bacterium that causes scrub typhus; Demodex mites are part of the normal microfauna of humans and their pets, but under certain conditions populations grow out of control and affect the integrity of the integumentary system; and scabies mites cause one of the most common dermatological diseases worldwide. On the other hand, recent genome sequences of mites provide novel tools for mite control and the development of new biomaterial with applications in biomedicine. Despite the palpable disease burden, mites remain understudied in parasitological research. By better understanding mite biology and disease processes, researchers can identify new ways to diagnose, manage, and prevent common mite-induced afflictions. This knowledge can lead to improved clinical outcomes and reduced disease burden from these remarkably widespread yet understudied creatures.