The aerodynamic and aeroacoustic effects of pylon trailing edge blowing on the propulsive performance and noise emissions of a propeller installed in a pusher configuration were studied in a wind tunnel. A propeller model and a pylon equipped with a trailing edge blowing system were installed in the large low-speed facility of the German-Dutch wind-tunnels (DNW-LLF). Particle image velocimetry measurements of the flow field downstream of the pylon confirmed a wake re-energization obtained through blowing, with a momentum deficit recovery of 80% compared to the unblown case. For the symmetric inflow conditions considered, the effect of pylon installation on the propulsive performance was found small. Increases in thrust and torque of 1% up to 6% were measured at high and low thrust settings, which was comparable to the measurement variability. Acoustic data obtained using out-of-flow microphones confirmed the strong interaction effects resulting from the installation of the upstream pylon, with an increase in noise levels due to the presence of the pylon of up to 12 dB at a medium propeller thrust setting. The application of pylon trailing edge blowing successfully eliminated the installation effects, resulting in noise levels equal to those of the isolated propeller over the entire axial directivity range. At higher thrust settings the change in blade angle of attack due to the pylon wake impingement is smaller, and the steady blade loads are larger compared to the unsteady loads experienced during the wake passage. Consequently, in this operating regime the propeller noise emissions were dominated by steady sources for all but the most upstream observer positions.