The reactivity of
a boron complex with a redox-active formazanate ligand, LBPh2 [L = PhNNC(p-tol)NNPh], was studied. Two-electron
reduction of this main-group complex generates the stable, nucleophilic
dianion [LBPh2]2–, which reacts with
the electrophiles BnBr and H2O to form products that derive
from ligand benzylation and protonation, respectively. The resulting
complexes are anionic boron analogues of leucoverdazyls. N–C
and N–H bond homolysis of these compounds was studied by exchange
NMR spectroscopy and kinetic experiments. The weak N–C and
N–H bonds in these systems derive from the stability of the
resulting borataverdazyl radical, in which the unpaired electron is
delocalized over the four N atoms in the ligand backbone. We thus
demonstrate the ability of this system to take up two electrons and
an electrophile (E+ = Bn+, H+) in
a process that takes place on the organic ligand. In addition, we
show that the [2e–/E+] stored on the
ligand can be converted to E• radicals, reactivity
that has implications in energy storage applications such as hydrogen
evolution.