Extension within a continental back‐arc basin initiates within continental rather than oceanic lithosphere, and the geochemical characteristics of magmatic rocks within continental back‐arcs are poorly understood relative to their intraoceanic counterparts. Here, we compile published geochemical data from five exemplar modern continental back‐arc basins—the Okinawa Trough, Bransfield Strait, Tyrrhenian Sea, Patagonia plateau, and Aegean Sea/Western Anatolia—to establish a geochemical framework for continental back‐arc magmatism. This analysis shows that continental back‐arcs yield geochemical signatures more similar to arc magmatism than intraoceanic back‐arcs do. We apply this framework to published data for Triassic‐Jurassic magmatic rocks from the Caucasus arc system, which includes a relict continental back‐arc, the Caucasus Basin, that opened during the Jurassic and for which the causal mechanism of formation remains debated. Our analysis of 40Ar/39Ar and U‐Pb ages indicates Permian‐Triassic arc magmatism from ∼260 to 220 Ma due to subduction beneath the Greater Caucasus and Scythian Platform. Late Triassic (∼220–210 Ma) collision of the Iranian block with Laurasia likely induced trench retreat in the Caucasus region and led to migration of the Caucasus arc and opening of the Caucasus Basin. This activity was followed by Jurassic arc magmatism in the Lesser Caucasus from ∼180 to 140 Ma and back‐arc spreading in the Caucasus Basin from ∼180 to 160 Ma. Trace element and Sr‐Nd isotopic data for magmatic rocks indicate that Caucasus Basin magmatism is comparable to modern continental back‐arcs and that the source to the Lesser Caucasus arc became more enriched at ∼160 Ma, likely from the cessation of back‐arc spreading.