In this study, pyrolysis of municipal sewage sludge samples from different sources including cattle and chicken manure as well as brook mud, was investigated using a thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TG-FTIR) at different heating rates (25, 50 and 100 °C/min). In order to determine the kinetic parameters, Arrhenius, model-free Kissinger–Akira–Sunose (KAS), as well as Friedman and Flynn–Wall–Ozawa (FWO) methods were compared. The thermogravimetric results revealed that pyrolysis involved different stages, and that the main decomposition reactions took place in the range of 200–600 °C. In this range, decomposition of biodegradable components (e.g., lipids and polysaccharides), proteins and carbohydrates occurred; meanwhile, there were samples (e.g., cattle manure, brook mud) in which the decomposition step could be observed even at temperatures above 700 °C. According to the Arrhenius method, the activation energies of the first decomposition stage were between 25.6 and 85.4 kJ/mol, while the activation energies of the second and third stages were in the ranges of 11.4–36.3 kJ/mol and 20.2–135 kJ/mol, respectively. The activation energies were also calculated by the KAS, Friedman and FWO methods, which were in the range of 100–300 kJ/mol for municipal sewage sludge or distillery sludge, and ranged between 9.6 and 240 kJ/mol for cattle manure, chicken manure and brook mud samples.