In brain-computer interfaces (BCIs) based on electroencephalography (EEG), two distinct types of EEG patterns related to movement have been used for detecting the brain's preparation for voluntary movements: a) event-related patterns in the time domain named movement related cortical potentials (MRCPs) and b) patterns in the frequency domain named event-related desynchronization/synchronization (ERD/ERS). The applicability of those patterns in BCIs is often evaluated by the classification performance. To this end, the known spatio-temporal differences in EEG activity can be of interest, since they might influence the classification performance of the two different patterns. In this paper, we compared the classification performance based on ERD/ERS and MRCP while varying the time point of prediction as well as the used electrode sites. Empirical results were obtained from eight subjects performing voluntary right arm movements. Results show: a) classification based on MRCP is superior compared to ERD/ERS close to the movement onset whereas the opposite results farther away from the movement onset, b) the performance maximum of MRCP is located at central electrodes whereas it is at fronto-central electrodes for ERD/ERS. In summary, the results contribute to a better insight into the spatial and temporal differences between ERD/ERS and MRCP in terms of prediction performance.
219Seeland A., Manca L., Kirchner F. and Kirchner E.. Spatio-temporal Comparison between ERD/ERS and MRCP-based Movement Prediction.