The flexible piezoelectric pressure sensor is essential in areas such as machine sensing and human activity monitoring. Here, 0-dimensional PZT piezoelectric ceramic nanoparticles with carbon coating were synthesized by a surface-modified technique. The excellent electrical conductivity of the carbon shell causes redistribution and accumulation of mobile charges in the carbon layer, resulting in a greatly increased piezoelectric effect by inducing an enhanced electric field. A series of organic–inorganic composite films were prepared by the spin-coating method using polydimethylsiloxane (PDMS) as the matrix. The as-fabricated flexible PZT@C/PDMS composite film with 40 wt% PZT@C powder exhibits an excellent output voltage of ~74 V, a peak of output current ~295 nA, as well as a big sensitivity of 5.26 V N−1. Moreover, the composite film can be used as a pressure sensor to detect changes in force as well as for monitoring limb movements such as finger flexion, wrist flexion, and pedaling. This study reveals the promising applications of flexible 40%PZT@C/PDMS composite film for limb motion monitoring and pressure sensing.