Theory and Applications of Special Functions
DOI: 10.1007/0-387-24233-3_9
|View full text |Cite
|
Sign up to set email alerts
|

q-Analogues of Some Multivariable Biorthogonal Polynomials

Abstract: In 1989 M.V. Tratnik found a pair of multivariable biorthogonal polynomials P n (x) and P m (x), which is not necessarily the complex conjugate of P m (x), such that ∞ −∞

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
4
0

Publication Types

Select...
2
1

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(4 citation statements)
references
References 9 publications
(9 reference statements)
0
4
0
Order By: Relevance
“…, a s+1 , η, N ) polynomials and of his second system of multivariable orthogonal Racah polynomials, from which systems of multivariable orthogonal q-Hahn, dual q-Hahn, q-Krawtchouk, q-Meixner, and q-Charlier polynomials follow as special or limit cases. Some q-extensions of Tratnik's [23] multivariable orthogonal Wilson polynomials and of his [21] multivariable biorthogonal generalization of the Wilson polynomials are given in our papers [11] and [10], respectively.…”
Section: Introductionmentioning
confidence: 99%
“…, a s+1 , η, N ) polynomials and of his second system of multivariable orthogonal Racah polynomials, from which systems of multivariable orthogonal q-Hahn, dual q-Hahn, q-Krawtchouk, q-Meixner, and q-Charlier polynomials follow as special or limit cases. Some q-extensions of Tratnik's [23] multivariable orthogonal Wilson polynomials and of his [21] multivariable biorthogonal generalization of the Wilson polynomials are given in our papers [11] and [10], respectively.…”
Section: Introductionmentioning
confidence: 99%
“…In 1991 Tratnik introduced some multivariable extensions of univariate orthogonal polynomials (see [51,52] and references therein). Moreover, q-analogues of these systems have been constructed by Gasper and Rahman [15,16,17], yielding systems of multivariable orthogonal Askey-Wilson polynomials and their special and limit cases. Bispectrality of multivariable Racah-Wilson and Askey-Wilson polynomials has been studied in [18] and [19], respectively.…”
Section: Introductionmentioning
confidence: 99%
“…Some q-extensions of Tratnik's [9] multivariable biorthogonal generalization of the Wilson polynomials are considered in this Proceedings [4]. q-Extensions of Tratnik's [11] system of multivariable orthogonal Racah polynomials and their special cases will be considered in a subsequent paper.…”
mentioning
confidence: 99%
“…In this paper we extend Tratnik's systems of multivariable Wilson polynomials to systems of multivariable Askey-Wilson polynomials and consider their special cases. Some q-extensions of Tratnik's [9] multivariable biorthogonal generalization of the Wilson polynomials are considered in this Proceedings [4]. q-Extensions of Tratnik's [11] system of multivariable orthogonal Racah polynomials and their special cases will be considered in a subsequent paper.…”
mentioning
confidence: 99%