2023
DOI: 10.1609/aaai.v37i7.26073
|View full text |Cite
|
Sign up to set email alerts
|

Q-functionals for Value-Based Continuous Control

Samuel Lobel,
Sreehari Rammohan,
Bowen He
et al.

Abstract: We present Q-functionals, an alternative architecture for continuous control deep reinforcement learning. Instead of returning a single value for a state-action pair, our network transforms a state into a function that can be rapidly evaluated in parallel for many actions, allowing us to efficiently choose high-value actions through sampling. This contrasts with the typical architecture of off-policy continuous control, where a policy network is trained for the sole purpose of selecting actions from the Q-func… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 15 publications
0
0
0
Order By: Relevance