The emerging trend towards moving from monolithic applications to microservices has raised new performance challenges in cloud computing environments. Compared with traditional monolithic applications, the microservices are lightweight, fine-grained, and must be executed in a shorter time. Efficient scaling approaches are required to ensure microservices' system performance under diverse workloads with strict Quality of Service (QoS) requirements and optimize resource provisioning. To solve this problem, we investigate the trade-offs between the dominant scaling techniques, including horizontal scaling, vertical scaling, and brownout in terms of execution cost and response time. We first present a prediction algorithm based on gradient recurrent units to accurately predict workloads assisting in scaling to achieve efficient scaling. Further, we propose a multi-faceted scaling approach using reinforcement learning called CoScal to learn the scaling techniques efficiently. The proposed CoScal approach takes full advantage of datadriven decisions and improves the system performance in terms of high communication cost and delay. We validate our proposed solution by implementing a containerized microservice prototype system and evaluated with two microservice applications. The extensive experiments demonstrate that CoScal reduces response time by 19% to 29% and decreases the connection time of services by 16% when compared with the state-of-the-art scaling techniques.