Despite the large literature on queueing theory and its applications, tool support to analyze these models is mostly focused on discrete-event simulation and mean-value analysis (MVA). This circumstance diminishes the applicability of other types of advanced queueing analysis methods to practical engineering problems, for example analytical methods to extract probability measures useful in learning and inference. In this tool paper, we present LINE 2.0, an integrated software package to specify and analyze extended queueing network models. This new version of the tool is underpinned by an object-oriented language to declare a fairly broad class of extended queueing networks. These abstractions have been used to integrate in a coherent setting over 40 different simulation-based and analytical solution methods, facilitating their use in applications.