2022
DOI: 10.21203/rs.3.rs-2003062/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

QGA-QGCNN:A model of Quantum Gate Circuit Neural Network optimized by Quantum Genetic Algorithm

Abstract: Using global optimization algorithm to optimize the initial weights and thresholds of traditional neural network model can effectively address the problems of premature convergence and lower accuracy. However, the shortcomings such as slower convergence speed and poor local search ability still exist. In order to solve these problems, a neural network model QGA-QGCNN using a Quantum Genetic Algorithm (QGA) to optimize Quantum Gate Circuit Neural Network (QGCNN) is proposed in this paper. In QGA-QGCNN, the init… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?