Protein kinases are implicated in multiple diseases such as cancer, diabetes, cardiovascular diseases, and central nervous system disorders. Identification of kinase substrates is critical to dissecting signaling pathways and to understanding disease pathologies. However, methods and techniques used to identify bona fide kinase substrates have remained elusive. Here we describe a proteomic strategy suitable for identifying kinase specificity and direct substrates in high throughput. This approach includes an in vitro kinase assay-based substrate screening and an endogenous kinase dependent phosphorylation profiling. In the in vitro kinase reaction route, a pool of formerly phosphorylated proteins is directly extracted from whole cell extracts, dephosphorylated by phosphatase treatment, after which the kinase of interest is added. Protein phosphorylation plays a pivotal role in regulating biological events such as protein-protein interactions, signal transduction, subcellular localization, and apoptosis (1). Deregulation of kinase-substrate interactions often leads to disease states such as human malignancies, diabetes, and immune disorders (2). Although a number of kinases are being targeted to develop new drugs, our understanding of the precise relationships between protein kinases and their direct substrates is incomplete for the majority of protein kinases (3). Thus, mapping kinase-substrate relationships is essential for the understanding of biological signaling networks and the discovery and development of drugs for targeted therapies (4). Toward this goal, various in vitro kinase assays using synthetic peptide libraries (5), phage expression libraries (6), protein arrays (7-9), or cell extracts (10, 11) have been explored for the screening of kinase substrates.Besides classical biochemical and genetic methods, mass spectrometry-based high throughput approaches have become increasingly attractive because they are capable of sequencing proteins and localizing phosphorylation sites at the same time. Mass spectrometry-based proteomic methods have been extensively applied to kinase-substrate interaction mapping (12) and global phosphorylation profiling (13-15). Although thousands of phosphorylation events can be inspected simultaneously (16,17), large-scale phosphoproteomics does not typically reveal direct relationships between protein kinases and their substrates.Recently, several mass spectrometry-based proteomic strategies have been introduced for identifying elusive kinase substrates (7,18,19). Taking advantage of recent advances of high speed and high-resolution mass spectrometry, these methods used purified, active kinases to phosphorylate cell extracts in vitro, followed by mass spectrometric analysis to identify phosphoproteins. These approaches commonly face the major challenge of distinguishing phosphorylation events triggered by the kinase reaction from background signals introduced by endogenous kinase activities (20). To dissect the phosphorylation cascade, Shokat and colleagues developed an appro...