2017
DOI: 10.1016/j.sigpro.2016.06.022
|View full text |Cite
|
Sign up to set email alerts
|

QML-RANSAC: PPS and FM signals estimation in heavy noise environments

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
14
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 34 publications
(15 citation statements)
references
References 43 publications
0
14
0
1
Order By: Relevance
“…Первым алгоритмом сверхразрешения радиосигналов принято считать метод Кейпона. Наиболее широко известен алгоритм MUSIC (Multiple Signal Classification), основанный на разделении пространства на сигнальное и шумовое подпространства [14][15][16][17][18][19][20][21][22][23]. В основе данных алгоритмов лежит теория оптимальной обработки сигналов на фоне шумов.…”
Section: научные статьи Articlesunclassified
“…Первым алгоритмом сверхразрешения радиосигналов принято считать метод Кейпона. Наиболее широко известен алгоритм MUSIC (Multiple Signal Classification), основанный на разделении пространства на сигнальное и шумовое подпространства [14][15][16][17][18][19][20][21][22][23]. В основе данных алгоритмов лежит теория оптимальной обработки сигналов на фоне шумов.…”
Section: научные статьи Articlesunclassified
“…The VA IF estimator requires search over all possible paths in the TF plane by minimizing the path penalty function with two criteria, i.e., the IF estimate should pass the TF representation points with a large magnitude, and path variations should be small [14]. Therefore, in this paper, we propose the RANSAC style algorithm to improve the accuracy of the IF estimation [11,12]. As elaborated in [14] and will be clearly seen from the examples, there are a large number of outliers in the IF estimate obtained from Eq.…”
Section: )/[R(t)c] Is Relatively Small Since H(t)/r(t)mentioning
confidence: 99%
“…Therefore, we have to perform multiple random selections and choose the best estimate from the ensembles based on some appropriate criterion. In this paper, we use the RANSAC-based IF (re)estimation, and the developed algorithm is described as follows [11,12]:…”
Section: )/[R(t)c] Is Relatively Small Since H(t)/r(t)mentioning
confidence: 99%
See 1 more Smart Citation
“…In order to solve the above problems, this paper proposes an algorithm based on Random Sample Consensus [17][18][19] (RANSAC) to separate rigid body and micro-Doppler information. Clear radar imaging is obtained by using S-transformation.…”
Section: Introductionmentioning
confidence: 99%