“…With the advancement of neural networks (Bahdanau et al, 2014;Sutskever et al, 2014), the task of abstractive summarization has been receiving more attention (Rush et al, 2015;Chopra et al, 2016;Nallapati et al, 2016;Celikyilmaz et al, 2018;Chen and Bansal, 2018; while neural-based methods have also been developed for extractive summarization (Zhong et al, 2019b,a;Xu and Durrett, 2019;Cho et al, 2019;Zhong et al, 2020;Jia et al, 2020). Moreover, the field of text summarization has also been broadening into several subcategories, such as multi-document summarization (McKeown and Radev, 1995;Carbonell and Goldstein, 1998;Ganesan et al, 2010;, query-based summarization (Daumé III and Marcu, 2006;Otterbacher et al, 2009;Wang et al, 2016;Litvak and Vanetik, 2017;Nema et al, 2017;Baumel et al, 2018;Kulkarni et al, 2020) and dialogue summarization (Zhong et al, 2021;Chen et al, 2021a,b;Gliwa et al, 2019;Chen and Yang, 2020;. The proposed tasks, along with the datasets can also be classified by domain, such as news (Hermann et al, 2015;Narayan et al, 2018), meetings (Zhong et al, 2021;Carletta et al, 2005;Janin et al, 2003), scientifc literature (Cohan et al, 2018;Yasunaga et al, 2019), and medical records (DeYoung et al, 2021;Portet et al, 2009).…”