Abstract-A future Internet of Things (IoT) system will connect the physical world into cyberspace everywhere and everything via billions of smart objects. On the one hand, IoT devices are physically connected via communication networks. The service oriented architecture (SOA) can provide interoperability among heterogeneous IoT devices in physical networks. On the other hand, IoT devices are virtually connected via social networks. In this paper we propose adaptive and scalable trust management to support service composition applications in SOA-based IoT systems. We develop a technique based on distributed collaborative filtering to select feedback using similarity rating of friendship, social contact, and community of interest relationships as the filter. Further we develop a novel adaptive filtering technique to determine the best way to combine direct trust and indirect trust dynamically to minimize convergence time and trust estimation bias in the presence of malicious nodes performing opportunistic service and collusion attacks. For scalability, we consider a design by which a capacity-limited node only keeps trust information of a subset of nodes of interest and performs minimum computation to update trust. We demonstrate the effectiveness of our proposed trust management through service composition application scenarios with a comparative performance analysis against EigenTrust and PeerTrust.