Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Quality of Service (QoS) refers to techniques that function on a network to dependably execute high-priority applications and traffic reliably run high-priority applications and traffic even when the network’s capacity is limited. It is expected that data transmission over next-generation WSNs (Wireless Sensor Networks) 5G (5th generation) and beyond will increase significantly, especially for multimedia content such as video. Installing multiple IoT (Internet of Things refers to the network of devices that are all connected to each other) nodes on top of 5G networks makes the design more challenging. Maintaining a minimal level of service quality becomes more challenging as data volume and network density rise. QoS is critical in modern networks because it ensures critical performance metrics and improves end-user experience. Every client attempts to fulfill QoS access needs by selecting the optimal access device(s). Controllers will then identify optimum routes to meet clients’ core QoS needs in their core network. QoS-aware delivery is one of the most important aspects of wireless communications. Various models are proposed in the literature; however, an adaptive buffer size according to service type, priority, and incoming communication requests is required to ensure QoS-aware wireless communication. This article offers a hybrid end-to-end QoS delivery method involving customers and controllers and proposes a QoS-aware service delivery model for various types of communication with an adaptive buffer size according to the priority of the incoming service requests. For this purpose, this paper evaluates various QoS delivery models devised for service delivery in real time over IP networks. Multiple vulnerabilities are outlined that weaken QoS delivery in different models. Performance optimization is needed to ensure QoS delivery in next-generation WSN networks. This paper addresses the shortcomings of the existing service delivery models for real-time communication. An efficient queuing mechanism is adopted that assigns priorities based on input data type and queue length. This queuing mechanism ensures QoS efficiency in limited bandwidth networks and real-time traffic. The model reduces the over-provisioning of resources, delay, and packet loss ratio. The paper contributes a symmetrically-designed traffic engineering model for QoS-ensured service delivery for next-generation WSNs. A dynamic queuing mechanism that assigns priorities based on input data type and queue length is proposed to ensure QoS for wireless next-generation networks. The proposed queuing mechanism discusses topological symmetry to ensure QoS efficiency in limited bandwidth networks with real-time communication. The experimental results describe that the proposed model reduces the over-provisioning of resources, delay, and packet loss ratio.
Quality of Service (QoS) refers to techniques that function on a network to dependably execute high-priority applications and traffic reliably run high-priority applications and traffic even when the network’s capacity is limited. It is expected that data transmission over next-generation WSNs (Wireless Sensor Networks) 5G (5th generation) and beyond will increase significantly, especially for multimedia content such as video. Installing multiple IoT (Internet of Things refers to the network of devices that are all connected to each other) nodes on top of 5G networks makes the design more challenging. Maintaining a minimal level of service quality becomes more challenging as data volume and network density rise. QoS is critical in modern networks because it ensures critical performance metrics and improves end-user experience. Every client attempts to fulfill QoS access needs by selecting the optimal access device(s). Controllers will then identify optimum routes to meet clients’ core QoS needs in their core network. QoS-aware delivery is one of the most important aspects of wireless communications. Various models are proposed in the literature; however, an adaptive buffer size according to service type, priority, and incoming communication requests is required to ensure QoS-aware wireless communication. This article offers a hybrid end-to-end QoS delivery method involving customers and controllers and proposes a QoS-aware service delivery model for various types of communication with an adaptive buffer size according to the priority of the incoming service requests. For this purpose, this paper evaluates various QoS delivery models devised for service delivery in real time over IP networks. Multiple vulnerabilities are outlined that weaken QoS delivery in different models. Performance optimization is needed to ensure QoS delivery in next-generation WSN networks. This paper addresses the shortcomings of the existing service delivery models for real-time communication. An efficient queuing mechanism is adopted that assigns priorities based on input data type and queue length. This queuing mechanism ensures QoS efficiency in limited bandwidth networks and real-time traffic. The model reduces the over-provisioning of resources, delay, and packet loss ratio. The paper contributes a symmetrically-designed traffic engineering model for QoS-ensured service delivery for next-generation WSNs. A dynamic queuing mechanism that assigns priorities based on input data type and queue length is proposed to ensure QoS for wireless next-generation networks. The proposed queuing mechanism discusses topological symmetry to ensure QoS efficiency in limited bandwidth networks with real-time communication. The experimental results describe that the proposed model reduces the over-provisioning of resources, delay, and packet loss ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.