Detection of QRS-complex is an important issue in the analysis and interpretation of electrocardiogram (ECG) signals. In this work, a classifier motivated from statistical learning theory, i.e., support vector machine (SVM), has been explored for detection of QRS-complex. Here, a raw ECG signal is band-pass filtered to remove base line wander and power line interference. Further, gradient criterion was used to enhance the QRS-complexes. The performance of the algorithm was tested on MIT-BIH arrhythmia standard database. The numerical results indicated that the algorithm achieved 99.87% of detection rate. This algorithm performs better in comparison to other published works on the same database. Furthermore, the performance of this algorithm was also estimated on EUROBAVAR database and ECGs recorded using BIOPAC®MP100 system and using Atria®6100 ECG machine. The detection rates of 100%, 99.9% and 100% have been achieved for respective datasets. This demonstrates the superiority of SVM algorithm for QRS detection. . His areas of interest are fuzzy modelling, biologically inspired computing and high performance computing and their applications to engineering and business. He is a Reviewer for various IEEE and other national and international conferences and journals. He also serves on the editorial board of International Journal of Swarm Intelligence Research. He has conducted a number of tutorials in the domain of soft computing at various national and international conferences.