Machine learning models have been widely adopted for passenger flow prediction in urban metros; however, the authors find machine learning models may underperform under anomalous large passenger flow conditions. In this study, they develop a prediction framework that combines the advantage of complex network models in capturing the collective behaviour of passengers and the advantage of online learning algorithms in characterising rapid changes in real-time data. The proposed method considerably improves the accuracy of passenger flow prediction under anomalous conditions. This study can also serve as an exploration of interdisciplinary methods for transportation research.